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INTRODUCTION
The field of artificial intelligence (AI) has been 
developing more prominently for over half a 
century. Innovations in computer processing power 
and analytical capabilities coupled with the avail-
ability of huge amounts of routinely collected data 
has meant that AI research and technology devel-
opment has grown exponentially in recent years. 
The results of this growth can be seen in emer-
gency medicine (EM)—with the Food and Drug 
Administration approving the first AI software as a 
medical device for wrist fracture detection in 2018. 
As of 2021, several more have been approved—for 
triage, X-ray identification of pneumothorax and 
notification and triage software for CT images.1

Between 2015 and 2021, there were over 500 
publications indexed in MEDLINE involving AI in 
acute and emergency care, with more than half of 
these published within the last 2 years alone. There 
is recognition that AI technology can potentially 
play an important role in ED decision making, 
workflow and operations.2–4 However, concerns 
with unstructured and often opaque reporting, 
inappropriate algorithm selection, proxy bias, data 
privacy and safety have led to calls for better stan-
dards for undertaking and reporting of research 
involving AI.5–9 For practising ED clinicians, this 
will facilitate interpretation and understanding 
of AI research prior to model deployment or 
generalisation.

The aim of this paper is to serve as a primer 
for clinicians and researchers in understanding 
common AI methods as they relate to EM, and to 
provide a framework for interpreting AI research. A 
companion paper provides a more detailed explo-
ration of the AI model building pipeline in an EM 
context.

WHAT IS THE PROMISE OF AI FOR EM?
AI technology is seen in multiple aspects of day-
to-day living—from email spam filters, voice acti-
vated devices, suggestions from entertainment 
streaming services and social media to self-driving 
cars—all are powered by AI of varying complexi-
ties. The natural extension into healthcare, and 
EM in particular, is expected given the generalist, 
public-facing nature of the specialty.

AI has the potential to influence and improve 
ED triage and outcome prediction,10 11 forecasting 
and operations,3 diagnosis2 and assessment of 
prognosis.12

In addition, AI is facilitating the harnessing of 
new technology suitable for ED applications and 
research, such as natural language processing,13 
radiomics14 and machine vision.15 Large data repos-
itories are being curated and leveraged to explore 
correlations between patient variables and urgent 
care outcomes.10 16 17 Examples of recent studies 
with a reasonable rationale for using AI methods 
are summarised in box 1.

However, the promise of AI must be tempered 
with acknowledgement of its evolving nature. This 
must be coupled with a realistic assessment of the 
acceptability and quality of current EM applica-
tions of the technology, especially compared with 
those which have been conventionally derived 
using traditional statistical methods. Certainly, in 
other specialties, AI models have not been shown to 
be superior to those derived by traditional logistic 
regression.18

The vast majority of AI EM diagnostic and prog-
nostic studies use retrospective data, that is, where 
the data were not collected specifically for the AI 
application (which also raises questions about the 
use of personal data without explicit consent). 
Importantly, <20% are externally validated in a 
traditional manner,19 with less than half of those 
externally validated according to AI standards.8 20 21 
Randomised trials are even rarer.

To compound matters, AI models can involve 
deep neural networks or similarly complex algo-
rithms. The way that these models arrive at a deci-
sion cannot be interrogated in the clinical setting, 
making transparency and acceptability challenging 
to clinicians, patients and regulators.22 23

Although most published research compares AI 
with a clinician,19 24 this is arguably largely irrel-
evant. In EM practice, AI solutions have poten-
tial for secondary benefits by facilitating effective 
use of clinician time and reducing cognitive load. 
This can be through automating non-clinical tasks, 
allocating resources or prioritising workflows for 
efficiency. Rather than replacing clinicians or clin-
ical tasks, AI’s true promise lies in supplementing 
or improving on clinicians’ care by harnessing the 
most appropriate human and machine abilities.

ARTIFICIAL INTELLIGENCE, MACHINE LEARNING 
AND DEEP NEURAL NETWORKS
Much of the terminology relating to AI can be 
confusing as they are often used interchangeably—
at least partly due to popular usage stemming from 
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science fiction references. Even within the fields of computing 
and data science (not to mention philosophy!), there is no clear 
definition of AI, and this is at least partly attributable to the 
evolving nature of the technology. Box 2 contains a glossary to 
aid in understanding AI terminology and descriptions uses in this 
paper. From a clinician’s perspective, AI can be considered any 
human-like intelligence displayed by a machine (computer). This 
definition is valid insofar as humans demonstrate intelligence by 

Box 1  Continued

algorithms can predict time-series events, and select important 
parameters/parameter combinations while handling class 
imbalance. They can therefore predict an outcome at multiple 
given time points, making it particularly useful in the ED where 
patients may present at different stages in disease progression. 
It also allows prediction, in this case, at up to 48 hours before 
the onset of severe sepsis.

Issues: the model demonstrated impressively high area under 
the receiver operating characteristics (AUROC), which was stable 
on external validation up to 6 hours before onset of severe 
sepsis. However, performance at 48 hours deteriorated markedly 
on external validation, suggesting overfitting (overtraining so 
it fits too closely to training data and is unable to generalise 
well for new data). For imbalanced datasets, AUROC is not 
an ideal metric for head-to-head comparison (given that the 
false positive rate (FPR) changes minimally due to the high 
number of true negatives—see Fig 4). Whether predicting the 
onset of severe sepsis translates into improved outcomes still 
requires evaluation—with further external validation and/or a 
randomised trial.

Adverse outcomes from COVID-1932

Problem: the rapid spread and variable disease progression of 
SARS-CoV-2 infections have meant that clinicians are working 
with an unprecedented lack of data, knowledge base or decision 
tools for predicting outcomes.

Why AI? The combination of individual patient variables 
which determine outcome are largely unknown. There is a 
paucity of quality data which considers disease outcomes 
at variable time points and at different stages of illness. In 
order to leverage available, good quality datasets to explore 
multiple predictor variables and their relative importance, an 
interpretable ensemble algorithm (Random Forest) can be used. 
This allows various models to be constructed with iterations of 
setting, clinical features, laboratory data and temporal measures, 
thus allowing flexibility in deployment and interpretability. In 
this case, the availability of a relatively small amount of good 
quality data to train and externally validate a model is preferable 
to larger poor-quality datasets from a single institution or region.

Issues: as with any AI model, deterministic capability 
is lacking. This is compounded by similar lack of 
pathophysiological knowledge of poor outcomes in COVID-19, 
for example, is obesity associated with poor outcomes due to 
immunomodulation or simply reduced respiratory capacity and is 
there therefore covariance and imputation issues which impacts 
on the model? A relatively small dataset makes the model 
potentially unstable, however external validation is reassuring 
other than for predicting intensive care unit admission (likely due 
to the small numbers). As additional data become available, the 
model performance and parameters may change, and validation 
in more diverse settings would be warranted.

Box 1  Emergency medicine-relevant studies using 
artificial intelligence (AI)/machine learning (ML)

Fracture recognition2

Problem: misinterpretation of limb X-rays by less experienced 
ED clinicians is not uncommon. Because contemporaneous 
radiologist reporting is not widely available, a system which 
automatically highlights abnormalities on an image may improve 
fracture detection.

Why AI? Deep neural networks (DNN) can be trained to 
identify areas (pixels) on an image where a fracture is likely. A 
DNN trained on a large number of images could improve the 
diagnostic accuracy of a clinician by providing a visual ‘opinion’ 
of the presence of a fracture. This principle can be extended to 
most imaging modalities.

Issues: although the reported DNN-aided accuracy was 
better than the clinician-only interpretation, this was assessed 
using images on which the DNN had been trained. The DNN 
would therefore have had an advantage, as it would have ‘seen’ 
the images before, and biasing direct comparison with human 
interpretation. In addition, the clinical significance of a missed or 
delayed fracture diagnoses must be considered—with the actual 
patient benefit of any diagnostic improvement from AI clearly 
shown.

Waiting time (WT) estimation17

Problem: knowledge of expected WT are helpful for ED patients, 
families and providers. Traditional triage or estimation based on 
historical time/day WTs are considered crude, and often do not 
reflect actual time spent waiting.

Why AI? Traditional statistical models derived from small 
datasets/single sites may not capture important predictors and 
are prone to overfitting. AI algorithms can look for important 
variables in large multicentre routine datasets and derive 
predictive models which should theoretically give accurate 
estimates of WTs across a network or at single sites. This 
approach would be more resource efficient than each site 
developing their own model.

Issues: even within a geographically defined area using 
a large dataset, estimates of WT from AI models were only 
accurate within 30 min of the actual wait time between 40% 
and 63% of the time. This may not be sufficient for operational 
benefit but may be for patient information purposes. External 
validation of models developed for one setting also appear to 
be less accurate at others, emphasising the importance of robust 
external evaluation and the need for site-specific customisation.

Predicting severe sepsis31

Problem: early recognition and treatment of sepsis improves 
outcomes. Several sepsis scoring systems are used to predict 
severe sepsis and outcomes. However, these generally cannot 
leverage trends or correlate individual measures and have 
moderate predictive value. Automated electronic patient record 
(EPR) sepsis alerting systems using these scores suffer from low 
specificity and false positives.

Why AI? Large datasets with physiological and outcome 
variables are available using EPR repositories. Conventional 
regression methods may not capture the interdependencies 
of individual parameters at specific times as well as relevant 
time-trends. The complexity of rationalising multiple variable 
combinations and the volume of data is challenging for human-
designed analysis; however, gradient boosted ensemble ML 

Continued
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learning from experience or observations, then use this knowl-
edge to recognise, interpret and take autonomous actions when 
faced with similar situations.

Machine learning (ML) is a subset of AI (figure 1), and involves 
the use of algorithms which can identify patterns in data, learn 

from these patterns, improve with experience and come to 
conclusions when faced with new data—all without being explic-
itly programmed.25 In EM, these data are generally from images, 
electronic patient records and ED or population databases, but 
can reasonably include any type of data which can be interpreted 
by an algorithm. These algorithms usually consist of program-
ming code (written in programming languages such as Python), 
mathematical formulae or combinations of these represented 
as pseudocode. There are several ML algorithm repositories/
libraries where researchers can access ‘off-the-shelf ’ algorithms, 
which have functions relevant to specific tasks. An AI algorithm 
which has ‘learnt’ from data is referred to as a model.

The term artificial neural network is used to describe an algo-
rithm which consists of an input, output and often intermediate 
(hidden) layer(s). Data (input variables, also called features) is 
fed into the algorithm, which then weighs various combinations 
of these variables in the intermediate layer, and feeds forward 
an output which is dependent on being activated at set thresh-
olds. As the number of hidden (intermediate) layers increase, this 
layer becomes deeper—hence deep learning (DL) or deep neural 
networks—and so does its ability to undertake more complex 
learning tasks. Output is passed from one layer to the next and 
is dependent on multiple inputs into multiple layers. DL models 
can also correct their own errors by backpropagation of data in 
order to refine and improve on performance.

The fundamental principle of the subtypes of AI is the require-
ment for learning from data. In ML, this is generally through 
either supervised or unsupervised learning. There are other 
types such as semi-supervised or reinforcement learning, which 
are less common in EM applications. Supervised learning is 
used in most ML applications and involves the use of labelled 
data (usually a type of variable as well as outcome of interest) 
fed to the algorithm so that it can learn the relationships and 
differences between the variables and outcome(s). Conversely, in 
unsupervised learning, unlabelled data are provided to the algo-
rithm, and it is allowed to determine patterns and features of the 
data on its own, without human input. Unsupervised learning is 
used primarily in exploratory (clustering) algorithms, and gener-
ally requires much more data to train than supervised models.

AI OR CONVENTIONAL METHODS?
ML/AI uses some biostatistical methods and measures that will 
be familiar to emergency physicians (EP). Some algorithms use 
methods based on linear regression, decision trees and Bayesian 
reasoning, among others and these can usually be represented 
mathematically. Significantly, AI/ML can go further, by using 
algorithms to leverage previously unrecognised variables (or 

Box 2  Glossary of artificial intelligence/machine learning 
terms

Algorithm: programming code/pseudocode or formulae which 
has been developed for a certain task or process.

Model: a representation of a trained algorithm, that is, an 
algorithm which has learnt from data.

Ensemble: combinations of diverse simpler algorithms to 
improve overall performance.

Data leakage: where data from outside the training set 
manage to leak into the model building (training) process, hence 
inappropriately influencing the model and its validation.

Feature: a measurable characteristic of the data or 
population of interest (commonly a variable).

Training set: data used by an algorithm to create or fit a model.
Validation set: data used to evaluate the model fit while 

tuning hyperparameters, or to select features.
Test set: data used to assess a model’s performance on 

unseen data.
Ground truth: analogous to gold standard.
Underfitting: where the model does not learn adequately, 

and performs poorly in training and testing. It has a high bias 
and low variance.

Overfitting: where the model has learnt the training set too 
well, and thus performs well in training but poorly in testing. It 
has a low bias and high variance.

Bias: the difference between predicted and actual values.
Variance: how varied the predictions are between different 

sets of input.
Parameter: a variable whose value is calculated from the 

data and forms part of the model itself. It is independent of the 
analyst and cannot be manually adjusted.

Hyperparameter: a setting or weight whose value cannot be 
calculated from the data and is external to the model. It can be 
tuned by the analyst.

Loss function: a measure of how the predicted output of 
each training instance differs from the actual outcome.

Regularisation: modifications to a learning algorithm intended 
to reduce its generalisation error but not its training error.33 This 
is usually by penalising or limiting weights or early stopping of 
training. This can be achieved by algorithms using least absolute 
shrinkage and selection operator or Ridge regression.

Decision tree: a type of algorithm which splits data based on 
probabilities or attributes in a branching pattern, until an output 
is determined.

Support vector machine: a classification algorithm which 
separates classes by finding a (hyper)plane of separability 
between them.

Naïve Bayes: uses Bayes theorem, that is, how pre-event 
variables influences postevent outcome probability. It is naïve as 
it assumes all variables are independent.

K-nearest neighbours: an algorithm which predicts an 
outcome by finding the k-nearest instances of the input variable 
and averaging their outcomes.

Random Forest: a decision-tree-based bagging ensemble 
model. It Randomly selects variables/data and builds a Forest of 
multiple decision trees.

Figure 1  Relationship between artificial intelligence, machine 
learning, artificial neural networks (ANN) and deep learning (deep 
neural networks (DNN)).
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features), which are different to the human-determined vari-
ables used in traditional statistics. In addition, models built on 
these algorithms can harness non-linear relationships between 
variables and outcomes, which make them well suited to identi-
fying complex or unapparent data inter-relationships. They are 
therefore better at exploratory predictive (regression or classi-
fication) modelling with large or computationally heavy data-
sets, whereas classic statistical approaches are arguably better for 
confirmatory, hypotheses-light analyses with relatively smaller 
datasets. Of note, the process of evaluation and comparison of 
different models is almost always based on conventional statis-
tical methods. These methods can often be adapted for ML 
models, commonly using programming code written specifically 
to simplify some types of analysis.

AI models learn from the data they are given—the algorithms 
can incorporate multiple data inputs and make predictions based 
on their analysis of the relationships between inputs and outputs. 
Just as an experienced EP who has looked at thousands of ECGs 
can interpret an ECG at a glance by what would be considered 
tacit knowledge, an AI/ML model should theoretically be able 
to similarly interpret specific ECGs—provided that it has learnt 
to do so by being trained on a sufficient number of similar 
ECGs for it to discern the relationships between the labelled 
ECG ‘variables’ and diagnosis. It can do this without explicitly 
learning—for example, it will not ‘learn’ the voltage criteria 
for left bundle branch block (LBBB), the electro-pathological 
reasons for the pattern or how it affects ST-elevation myocardial 
infarction (STEMI) diagnosis. It may however, still be able to 

Figure 2  Steps in artificial intelligence (AI) model development. Square brackets denote steps which are sometimes described during data 
management, model development or evaluation. Feedback and iterations of preceding steps are expected. ML, machine learning. PICO/PECO - 
Population/ Intervention (Exposure)/Comparison/Outcome

 on M
ay 27, 2022 by guest. P

rotected by copyright.
http://em

j.bm
j.com

/
E

m
erg M

ed J: first published as 10.1136/em
erm

ed-2021-212068 on 3 M
arch 2022. D

ow
nloaded from

 

http://emj.bmj.com/


384 Ramlakhan S, et al. Emerg Med J 2022;39:380–385. doi:10.1136/emermed-2021-212068

Practice review

diagnose LBBB or a STEMI. This analogy highlights an often-
ignored aspect of AI—it has no deterministic capability and 
cannot discern physical, physiological or pathological determi-
nants or constraints. It can therefore find spurious relationships 
which may lead to inappropriate predictions. With large datasets 
with multiple combinations of input variables, it is not difficult 
to see how ‘statistically’ significant relationships can be derived 
purely by chance—so-called ‘p-hacking’.

Another driver for using AI/ML stems from the type of 
data that is being made available. Besides large-scale routinely 
collected data, other types of data which were previously rela-
tively untapped due to their complexity are well suited for AI 
algorithmic analysis. These include diagnostic imaging, labora-
tory or physiological data and free text from clinical notes.

Understanding the differences between AI and traditional 
statistical methods also comes from appreciating the focus of 
the main proponents of AI development—usually in data-rich 
technology and marketing industries—where the performance 
of a model takes priority over describing how it works. ML/AI 
is focused on real-life predictions or decisions based on new or 
dynamic data, whereas traditional statistics is more focused on 
understanding and articulating data relationships using estab-
lished statistical theories and assumptions. This difference is 
critical—the point of creating an AI model is not to show how 
it performs in vitro, but to deploy it in the real world (clinically 
or operationally). The ultimate goal therefore, is developing a 
model which can be confidently generalised.

STAGES IN DEVELOPING AN AI (MACHINE LEARNING) 
MODEL
EM research in AI is almost entirely focused on ML models, 
and therefore the focus henceforth will be on ML, although 
the framework and principles will also apply to almost any 
AI model. There is significant variability in the reporting and 
conduct of ML research, which can make interpretation chal-
lenging—particularly when some of the models used are by 
their nature ‘black boxes’.22 An ML model should be developed 
systematically, with the same structure and clinical focus as any 
traditional EM clinical research. The steps in model develop-
ment from conception to deployment are outlined in figure 2.

An understanding of model development is useful when inter-
preting an AI research paper. More detail on this process is 
discussed in a linked companion paper26.

INTERPRETING AN AI/ML PAPER
The ability to interpret and understand ML methodology is 
vitally important to EM clinicians. Key considerations when 
appraising an EM AI/ML paper are summarised in table 1.

There are concerns that AI in clinical medicine is overhyped 
and suffers from poor methodology, reporting and transparency.9 
This is reflected in the findings of systematic reviews which 
have highlighted incomplete and non-standardised methods 
and reporting in ML studies.6 18 19 24 27 This has led to calls for 
reporting standards to address these shortcomings, with exten-
sions to current reporting guidelines8 28 29 developed along with 
suggested general20 30 and specialist21 frameworks and checklists 
being proposed.

Table 1  Key considerations when appraising an EM AI/ML paper

Key considerations

Internal 
validity

Study question 1.	 Is the study question and aim clearly stated?
2.	 Is a comparison with the current EM practice baseline and rationale for improvement explicitly stated?
3.	 Is the use of ML justifiable as opposed to traditional statistical methods?
4.	 Is the strategy for model development, validation and evaluation clearly described in a clinical EM context?

Baseline data 1.	 Is sufficient good quality data available? Has a sample size assessment been made?
2.	 Is data representative of the population and setting in which the model is being deployed?
3.	 Has data preprocessing been clearly described and handled in an EM applicable manner? Is this reproducible?
4.	 Have redundant (noisy or collinear) variables been identified and addressed?
5.	 Has any baseline class imbalance been addressed, and is the method appropriate to the intended EM task?
6.	 Is Ground Truth valid and reflects the EM ‘gold standard’.

Data split/
Resampling

1.	 Has the approach to data resampling been clearly described? (is a data flow diagram provided)
2.	 Have internal and external validation test sets been clearly identified, and are they as independent as possible?
3.	 Is the data split clear, rationalised and stratified if appropriate?
4.	 Has data leakage been avoided?

Algorithm 
selection

1.	 Has the rationale for selecting candidate algorithms been explained in relation to the study aims? Has overfitting been explicitly addressed?
2.	 Are candidate algorithms appropriate to EM and representative of a range of complexities?
3.	 Has a variable selection procedure been described? Are chosen variables plausible in the EM context?
4.	 Have the metrics for model evaluation been defined and rationalised?

Model validation 1.	 Are the model evaluation metrics appropriate to the task and clinical question? If not, has model performance been reported with a clinically 
applicable (EM) metric?

2.	 Are estimates of model variance reported (from cross-validation/bootstrapping)?
3.	 Has tuning of model hyperparameters been undertaken, and have the settings been reported?
4.	 Have model calibration and discrimination been reported, and have these been tuned?

External 
validity

Reproducibility 1.	 Has a statement regarding code (and data) availability been included?
2.	 Are all steps in the model development described in sufficient detail to allow independent replication of the model pipeline?
3.	 Has interpretability been explicitly and reasonably addressed (eg, by model visualisations)?

Generalisability 1.	 Has external validation on a geographically (and temporally) independent test set been undertaken?
2.	 Are performance metrics consistent with the estimates of spread obtained during internal validation?
3.	 Have the reasons for good or poor performance on external validation been objectively explored?
4.	 Is the final model suitable for deployment in the ED? Does it have high computational or resource requirements?
5.	 Has an assessment been made of the potential for exacerbation of bias by the deployed model?

AI, artificial intelligence; EM, emergency medicine; ML, machine learning.
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There are several ML repositories and libraries which allow 
researchers to use ML techniques out-of-box using accessible 
platforms such as ​R(​r-​project.​org). As with any novel tool, there 
is a risk of inappropriate or clinically disconnected use. In addi-
tion, internal validation processes are heterogeneous with heuris-
tics and analyst preference regarding algorithms, procedures, 
metrics and validation being common. Because of the interde-
pendencies of various steps in model development, bias or poor 
choice of processes at any part of data selection, preparation 
or model development will have a knock-on effect, and impact 
negatively on the performance of the final model(s). This and 
other model building considerations are explored and expanded 
on in a linked paper, along with discussion of the pitfalls to be 
aware of when interpreting AI model performance.

This paper should provide the reader with conceptual insight 
on how AI models are developed and a framework to interpret 
AI applications as it relates to EM practice and research. There is 
scope for synergism between AI and EM clinicians to maximise 
efficiency within EDs by using these methods in workflow, triage 
processes, automating certain tasks and diagnostic applications. 
There is likely to be an ongoing increase in the number of studies 
describing these methods. Therefore, the ability to critically 
appraise these papers and careful awareness that despite exciting 
promise, AI models still have to be methodologically sound and 
applicable to real-world practice. The true benefit of AI is likely 
in assisting clinicians rather than replacing them.
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